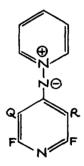
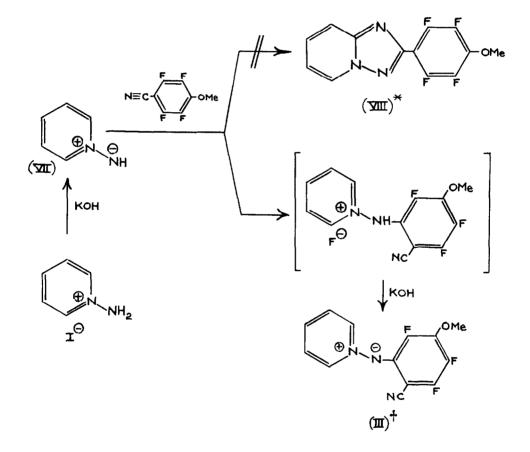

Journal of Fluorine Chemistry, 12 (1978) 159–166 © Elsevier Sequoia S.A., Lausanne – Printed in the Netherlands Received: January 23, 1978


SHORT COMMUNICATION

Fluorocarbon Derivatives of Nitrogen. Part II [1]. Synthesis of Fluorinated N-Aryl and N-Heteroaryliminopyridinium Ylides

R.E. BANKS * and S.M. HITCHEN

Chemistry Department, the University of Manchester Institute of Science and Technology, Manchester M60 1QD (Great Britain)



(I) X = Y = Z = F	(IV)	$\mathbf{Q} = \mathbf{R} = \mathbf{F}$
(II) $X = CN$, $Y = Z = F$	(V)	Q = F, $R = Cl$
(III) $X = F$, $Y = CN$, $Z = OMe$	(VI)	Q = R = CL

The isolable iminopyridinium ylides (I)-(VI) have been prepared by treating hexafluorobenzene,

"To whom enquiries should be addressed.

pentafluorobenzonitrile, tetrafluoro-4-methoxybenzonitrile, pentafluoropyridine, 3-chlorotetrafluoropyridine, and 3,5-dichlorotrifluoropyridine, respectively, with <u>N</u>-iminopyridinium ylide (VII) under basic conditions. This work stemmed from a study of fluorinated indolizines [2], and in particular from an attempt to synthesise the 3-azaindolizine (VIII) through utilization of the dipolarophilic potential of the cyano function of tetrafluoro-4-methoxybenzonitrile [3] (see the Scheme).

SCHEME

*None detected (t.l.c.). + Crude yield 84%.

160

Formation of the indolizine was thwarted by the ease with which <u>N</u>-iminopyridinium ylide displaced fluorine from the nitrile, the final product being the new <u>N</u>-aryliminopyridinium ylide (III) - an outcome which prompted us to establish the generality of this reaction in the polyfluoroaromatic field [4].

EXPERIMENTAL

N.m.r. spectroscopy

N.m.r. spectra were obtained with a Perkin-Elmer R32 instrument operating at 84.6 MHz (19 F) or 90 MHz (1 H). Chemical shifts to high field of reference signals are designated negative.

Starting materials

<u>N</u>-Aminopyridinium iodide (NAPI) [5], pentafluorobenzonitrile [6], tetrafluoro-4-methoxybenzonitrile [7], and pentafluoro-, 3-chlorotetrafluoro-, and 3,5dichlorodifluoro-pyridine [8] were synthesised according to published procedures. Hexafluorobenzene was purchased [Fluorochem Ltd.].

Generation of N-iminopyridinium ylide

Deep blue, or purplish blue, solutions of <u>N</u>-iminopyridinium ylide (NIPY) were prepared immediately prior to use by treating corresponding solutions of <u>N</u>-aminopyridinium iodide (NAPI) with an excess of base [9]. The solutions were used as prepared; thus, when anhydrous potassium carbonate was employed as the base, no attempt was made to remove the solid material.

<u>Reactions of fluorinated aromatics with N-iminopyridinium</u> <u>ylide</u>

(a) Hexafluorobenzene

A solution of hexafluorobenzene (2.00 g, 10.8 mmole) in DMF (10 cm³) was added to NIPY [ex NAPI (2.22 g, 10.0 mmole) + K_2CO_3 (3 g) in DMF (10 cm³) (stirred for 15 min at 20 °C)]in the same solvent. The greenish black mixture was stirred for 48 h then filtered: the filtrate. plus DMF $(5 \times 5 \text{ cm}^3)$ used to wash the precipitate. was poured into water (75 cm^3) , and the greenish-brown material which precipitated was purified by column chromatography (40 x 2.5 cm silica gel eluted with $Me_{2}CO$) followed by recrystallization $[Me_2CO-H_2O(60:40 v/v)]$, to provide <u>N</u>-(pentafluorophenyl)iminopyridinium ylide (nc) (1.49 g, 5.73 mmole, 57%) [Found: C, 50.6; H, 1.7; F, 36.4; N, 10.8%; <u>M</u> (mass spec.), 260. $C_{11}H_5F_5N_2$ requires C, 50.8; H, 1.9; F, 36.5; N, 10.8%; M, 260 as golden yellow plates, m.p. 156-157 °C (decomp.), $\mathcal{N}_{max.}$ (mull) 1500 cm⁻¹ (C₆F₅ nucleus), \mathcal{S}_{F} [<u>ca</u>. 30% soln. in (CD₃)₂SO at 70 °C; ext. CF₃CO₂H] -75.0 (2-,6-F), -88.5 (3-,5-F), and -98.9 (4-F) p.p.m. (rel.int. 2:2:1), δ_{H} (same soln.; ext. 1,4-Cl₂C₆H₄) +0.1 (3-,4-,5-H) and +0.95 (2-,6-H) p.p.m. (rel.int. 3:2), and <u>m/e</u> 260 (<u>M</u>⁺, 40%), 181 ($C_6F_5N_{\bullet}^+$, 18%), and 79 ($C_5H_5N_{\bullet}^+$, 100%).

(b) Pentafluorobenzonitrile

A solution of pentafluorobenzonitrile (0.605 g, 3.13 mmole) in ethanol (5 cm³) was added to NIPY [<u>ex NAPI (0.80 g, 3.60 mmole) + K₂CO₃ (2 g) in EtOH (20 cm³)] in the same solvent. The yellow mixture was stirred for 2 days then filtered; the filtrate, plus ethanol (2 x 10 cm³) used to wash the precipitate, was evaporated and the residue (shown by t.l.c. to contain only one tractable product) was purified by a combination of column chromatography (40 x 2.5 cm alumina eluted with Me₂CO) and recrystallization (using aqueous ethanol) to provide <u>N</u>-(4-cyanotetrafluorophenyl)iminopyridinium</u> ylide (nc) (0.13 g, 0.48 mmole, 16%) [Found: C, 54.0; H, 1.8; F, 28.5; N, 15.4%; <u>M</u> (mass spect.), 267. $C_{12}H_5F_4N_3$ requires C, 53.9; H, 1.9; F, 28.5; N, 15.7%; <u>M</u>, 267] as yellowish green needles, m.p. 235-237 (decomp.), \mathcal{N}_{max} (mull) 2232 (G=N str.) µm, \mathcal{S}_F (<u>ca</u>. 40% soln. in CF_3CO_2H ; ext. CF_3CO_2H) -53.8 (3-,5-F) and -74.0 (2-,6-F) p.p.m. (rel.int. 1:1), \mathcal{S}_H (same soln.; ext. 1,4-Cl₂C₆H₄) +1.0 (3-,5-H), +1.53 (4-H), and +1.83 (2-,6-H) p.p.m. (rel.int. 2:1:2), and <u>m/e</u> 267 (<u>M</u>⁺, 93%), 188 (NCC₆F₄N⁺, 4%), and 79 (C₅H₅N⁺, 100%).

(c) Tetrafluoro-4-methoxybenzonitrile

A yellow precipitate appeared immediately when a solution of tetrafluoro-4-methoxybenzonitrile (0.135 g. 0.659 mmole) in ethanol was added to NIPY [ex NAPI (0.16 g, 0.72 mmole) + 2M-KOH aq.(1.0 cm³, 2.0 mmole)] in aqueous potassium hydroxide. The mixture was stirred for 1 h then poured into water (50 cm^3): recrystallization (aqueous ethanol) of the solid product (0.154 g; one t.l.c. spot) gave N-(2-cyano-3,4,6-trifluoro-5-methoxyphenyl)iminopyridinium ylide (n.c.) (0.145 g, 0.520 mmole, 79%) as yellow needles, m.p. 192-193 °C (decomp.). This product possessed the same spectral characteristics [\mathcal{N}_{max} (mull) 2220 (C=N str.) μ m, δ_F (<u>ca</u>. 40% soln. in CF_3CO_2H ; ext. CF_3CO_2H) -54.3 (3-F), -65.2 (6-F), and -73.7 (4-F) p.p.m. (rel.int. 1:1:1), and $\delta_{\rm H}$ (same soln.; ext. 1,4-Cl₂C₆H₄) +0.98 (3-,5-H), +1.47 (4-H), +1.80 (2-,6-H), and -2.96 (OCH₃) p.p.m. (rel.int. 2:1:2:3)] as a sample [Found: C, 55.6; H, 2.6; F, 20.6; N, 14.9. C13H8F3N30 requires C, 55.9; H, 2.9; F, 20.4; N, 15.05%] obtained in 33% yield (after recrystallization) using a NAPI : KOH molar ratio of only 1:1.5.

(d) Pentafluoropyridine

A solution of pentafluoropyridine (1.72 g, 10.2 mmole) in ethanol (10 cm³) was added to NIPY [<u>ex</u> NAPI (2.22 g, 10.0 mmole) + K_2CO_3 (3 g) in EtOH (80 cm³) (stirred for 15 min at 20 °C)]. The mixture was stirred

overnight, then filtered; the precipitate was washed with water (20 cm³), dried <u>in vacuo</u> over P_2O_5 , and recrystallized from aqueous ethanol to give \underline{N} -(2,3,5,6-tetrafluoro-4-pyridyl)iminopyridinium ylide (nc) (1.75 g, 7.22 mmole, 72%) [Found: C, 49.3; H, 1.9; F, 31.2; N, 17.4%; <u>M</u> (mass spec.), 243. $C_{10}H_5F_4N_3$ requires C, 49.4; H, 2.1; F, 31.3; N, 17.3%; <u>M</u>, 243] as pale yellow needles, m.p. 231-232.5 °C (decomp.), $\bigwedge_{max.}$ (mull) 1475 cm⁻¹ (C_5F_4N nucleus), δ_F [40% soln. in (CD_3)₂SO at 70 °C; ext. CF_3CO_2H] -20.4 (2-,6-F) and -84.8 (3-,5-F) p.p.m. (rel.int. 1:1), δ_H (same soln. at 120 °C; ext. 1,4- $Cl_2C_6H_4$) +0.3 to +0.8 (3-,4-,5-H) and +1.43 (2-,6-H) p.p.m. (rel.int. 3:2), and <u>m/e</u> 243 (M⁺, 96%), 164 ($C_5F_4N_2^+$, 1%), and 79 ($C_5H_5N^+$, 100%).

(e) 3-Chlorotetrafluoropyridine

Experiment (d) was repeated with 3-chlorotetrafluoropyridine (2.0 g, 10.8 mmole) in place of pentafluoropyridine. The product was <u>N</u>-(3-chloro-2,5,6-trifluoro-4-pyridyl)iminopyridinium ylide (nc) (1.78 g, 6.86 mmole, 69%) [Found: C, 46.0; H, 2.1; F, 21.5; N, 16.2%; <u>M</u> (mass spec.) 259.5. $C_{10}H_5ClF_3N_3$ requires C, 46.2; H, 1.9; F, 22.0; N, 16.2%; <u>m</u>, 259.5], isolated as yellow needles, m.p. 213-215 °C (decomp.) (recrystallized from aqueous ethanol), δ_F [<u>ca</u>. 20% soln. in (CD₃)₂SO at 70 °C; ext. CF₃CO₂H] -2.0 (2-F), -19.5 (6-F), and -88.5 (5-F) p.p.m. (rel.int. 1:1:1), δ_H (same soln. at 70 °C; ext. 1,4-Cl₂C₆H₄) +0.3 to +0.8 (3-,4-,5-H) and +1.4 (2-,6-H) p.p.m. (rel.int. 3:2), and <u>m/e</u> 261 [<u>M</u>(³⁷Cl)⁺, 20%], 259 [<u>M</u>(³⁵Cl)⁺, 60%], and 79 (C₅H₅N⁺, 100%).

(f) 3,5-Dichlorotrifluoropyridine

Experiment (d) was repeated with 3,5-dichlorotrifluoropyridine (2.1 g, 11.5 mmole) in place of pentafluoropyridine. The product (recrystallized from aqueous acetone) was <u>N</u>-(3,5-dichloro-2,6-difluoro-4-pyridyl)iminopyridinium ylide (nc) (2.5 g, 9.1 mmole, 91%), isolated as lemon yellow crystals [Found: C, 43.7; H, 1.8; Cl, 25.7; F, 14.0; N, 15.4%; <u>M</u> (mass spec.), 276. $C_{10}H_5Cl_2F_2N_3$ requires C, 43.5; H, 1.8; Cl, 25.7; F, 13.8; N, 15.2%; <u>M</u>, 276], m.p. 235-237 °C (decomp.), $\delta_F [\underline{ca}, 30\%$ soln. in (CD₃)₂SO at 110 °C; ext. CF₃CO₂H] +1.3 (br. s)(2-,6-F) p.p.m., δ_H (same soln. at 110 °C; ext. 1,4-Cl₂C₆H₄) +0.3 to +0.8 (3-,4-,5-H) and +1.2 (2-,6-H) p.p.m. (rel.int. 3:2), and m/e 279 [<u>M</u>⁺ (³⁷Cl₂), 7%], 277 [<u>M</u>⁺ (³⁷Cl³⁵Cl), 43%], 275 [<u>M</u>⁺ (³⁵Cl₂), 65%], and 79 (C₅H₅N⁺, 100%).

The award of an SRC Studentship to S.M.H. is gratefully acknowledged.

REFERENCES

- 1 Part I, R.E. Banks and C. Oppenheim, J.Fluorine Chem., <u>12</u> (1978), 27.
- 2 R.E. Banks and S.M. Hitchen, work in progress.
- 3 For a recent review of the synthesis of 3-azaindolizines, see T. Uchida and K. Matsumoto, Synthesis, (1976) 209.
- 4 In the hydrocarbon field, it has been known for some time [T. Okamoto, S. Hayashi, H. Horikiri, and M. Hirobe, Yakugaku Zasshi, <u>91</u> (1971), 210] that <u>N</u>-iminopyridinium ylide (prepared <u>in situ</u> from <u>N</u>-aminopyridinium chloride or iodide and NaOEt/EtOH) attacks activated (in the S_NAr sense) aryl and heteroaryl monohalides [e.g., 2,4-(NO₂)₂C₆H₃Cl, 2-bromopyridine, 4-chloroquinoline-<u>N</u>-oxide] to provide the corresponding <u>N</u>-substituted iminopyridinium ylides.
- 5 R.Gösl and A. Meuwsen, Org. Synth., <u>43</u> (1963), 1.
- 6 J.M. Birchall, R.N. Haszeldine, and M.E. Jones, J.Chem.Soc. (C), (1971), 1341.
- 7 J.M. Birchall, R.N. Haszeldine, and M.E. Jones, J.Chem.Soc. (C), (1971), 1343.

8 R.E. Banks, R.N. Haszeldine, J.V. Latham, and I.M. Young, J.Chem.Soc., (1965) 594.

- 9 See, for example, T. Okamoto, M. Hirobe, Y. Tamai, and E. Yabe, Chem.Pharm.Bull., <u>14</u> (1966), 506
- $(2\underline{M}-KOH/EtOH)$; T. Okamoto, M. Hirobe, and T. Yamazaki, <u>ibid.</u>, p. 512 (K₂CO₃/DMF); T. Sasaki, K. Kanematsu, and A. Kakehi, J.Org.Chem., <u>37</u> (1972), 3106 (K₂CO₃/EtOH); and A. Kakehi and S. Ito, <u>ibid.</u>, <u>39</u> (1974) 1542 (K₂CO₃/CHCl₃). For a recent review of heteroaromatic <u>N</u>-imines, see H.-J. Timpe, Adv. Heterocyclic Chem., <u>17</u> (1974), 213.

166